Tonotopic map of potassium currents in chick auditory hair cells using an intact basilar papilla.

نویسندگان

  • A A Pantelias
  • P Monsivais
  • E W Rubel
چکیده

The avian basilar papilla is tonotopically organized such that hair cells along the sensory epithelium respond best to acoustic stimulation at differing frequencies. This specificity arises due to the mechanics of the cochlea itself and intrinsic electrical properties of the hair cells. Tall hair cells show membrane voltage oscillations in response to step current injection that may allow cells to act as electrical resonators, boosting the response at the resonant frequency. These oscillations and the underlying currents have been studied in enzymatically isolated cells. This study uses a whole chick (Gallus domesticus) basilar papilla preparation where the entire epithelium and its afferent connections are intact. With this preparation, a map of changes in potassium currents of tall hair cells was produced. All cells recorded from expressed two K+ currents, a calcium-activated K+ current, I(K(Ca)), and a voltage-activated K+ current, I(K). Also, apical cells expressed an inward rectifier K+ current, I(IR). The amplitude of total outward current increases in a gradient along the tonotopic axis. Pharmacological blockers were used to separate the outward K+ currents. These experiments showed that both currents individually increase in magnitude along a gradient from apex to base. Finally, measurements of oscillation frequency in response to current steps suggest a discontinuous change in the electrical resonances at about 33% from the apex. This study demonstrates a new preparation to study the electrical properties of hair cells in more detail along the tonotopic axis of the chick basilar papilla.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of novel potassium channels in the chick basilar papilla.

Ionic currents are critical for the functioning of the inner ear auditory sensory epithelium. We set out to identify and molecularly clone the genes encoding the channels responsible for several currents in the chick basilar papilla. Here we describe an inward-rectifying K+ channel, cKir2.3, present in both hair cells and support cells in the apical end of the chick basilar papilla. The biophys...

متن کامل

The electrical properties of auditory hair cells in the frog amphibian papilla.

The amphibian papilla (AP) is the principal auditory organ of the frog. Anatomical and neurophysiological evidence suggests that this hearing organ utilizes both mechanical and electrical (hair cell-based) frequency tuning mechanisms, yet relatively little is known about the electrophysiology of AP hair cells. Using the whole-cell patch-clamp technique, we have investigated the electrical prope...

متن کامل

Tamoxifen inhibits BK channels in chick cochlea without alterations in voltage-dependent activation.

Large-conductance, Ca(2+)-activated, and voltage-gated potassium channels (BK, BK(Ca), or Maxi-K) play an important role in electrical tuning in nonmammalian vertebrate hair cells. Systematic changes in tuning frequency along the tonotopic axis largely result from variations in BK channel kinetics, but the molecular changes underpinning these functional variations remain unknown. Auxiliary beta...

متن کامل

Distribution of Ca2+-Activated K+ Channel Isoforms along the Tonotopic Gradient of the Chicken's Cochlea

In some cochleae, the number and kinetic properties of Ca2+-activated K+ (KCa) channels partly determine the characteristic frequency of each hair cell and thus help establish a tonotopic map. In the chicken's basilar papilla, we found numerous isoforms of KCa channels generated by alternative mRNA splicing at seven sites in a single gene, cSlo. In situ polymerase chain reactions demonstrated c...

متن کامل

A gradient of Bmp7 specifies the tonotopic axis in the developing inner ear

The auditory systems of animals that perceive sounds in air are organized to separate sound stimuli into their component frequencies. Individual tones then stimulate mechanosensory hair cells located at different positions on an elongated frequency (tonotopic) axis. During development, immature hair cells located along the axis must determine their tonotopic position in order to generate freque...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hearing research

دوره 156 1-2  شماره 

صفحات  -

تاریخ انتشار 2001